1. General description

The 74LVC1G10 provides a low-power, low-voltage single 3-input NAND gate.

The inputs can be driven from either 3.3 V or 5 V devices. This feature allows the use of this device in a mixed 3.3 V and 5 V environment.

Schmitt trigger action at all inputs makes the circuit tolerant to slower input rise and fall time.

This device is fully specified for partial power-down applications using I_{OFF} . The I_{OFF} circuitry disables the output, preventing the damaging backflow current through the device when it is powered down.

2. Features and benefits

- Wide supply voltage range from 1.65 V to 5.5 V
- High noise immunity
- Complies with JEDEC standard:
 - ◆ JESD8-7 (1.65 V to 1.95 V)
 - JESD8-5 (2.3 V to 2.7 V)
 - JESD8-B/JESD36 (2.7 V to 3.6 V).
- ± 24 mA output drive (V_{CC} = 3.0 V)
- CMOS low power consumption
- Latch-up performance exceeds 250 mA
- Direct interface with TTL levels
- Inputs accept voltages up to 5 V
- ESD protection:
 - ◆ HBM JESD22-A114F exceeds 2000 V
 - MM JESD22-A115-A exceeds 200 V
 - CDM JESD22-C101E exceeds 1000 V
- Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

3. Ordering information

Table 1.Ordering	information			
Type number	Package			
	Temperature range	Name	Description	Version
74LVC1G10GW	–40 °C to +125 °C	SC-88	plastic surface-mounted package; 6 leads	SOT363
74LVC1G10GV	–40 °C to +125 °C	SC-74	plastic surface-mounted package (TSOP6); 6 leads	SOT457
74LVC1G10GM	–40 °C to +125 °C	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body $1 \times 1.45 \times 0.5$ mm	SOT886
74LVC1G10GF	–40 °C to +125 °C	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body $1 \times 1 \times 0.5$ mm	SOT891
74LVC1G10GN	–40 °C to +125 °C	XSON6	extremely thin small outline package; no leads; 6 terminals; body $0.9 \times 1.0 \times 0.35$ mm	SOT1115
74LVC1G10GS	–40 °C to +125 °C	XSON6	extremely thin small outline package; no leads; 6 terminals; body $1.0 \times 1.0 \times 0.35$ mm	SOT1202

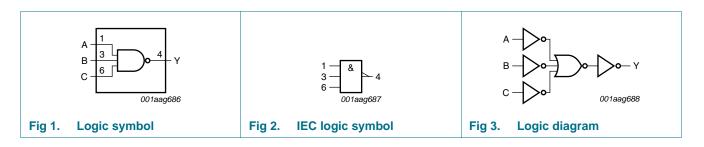
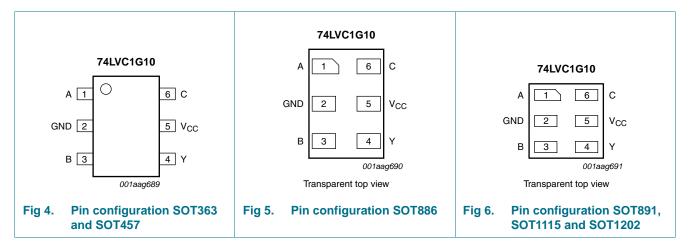

4. Marking

Table 2. Marking

Type number	Marking code ^[1]
74LVC1G10GW	YM
74LVC1G10GV	YM
74LVC1G10GM	YM
74LVC1G10GF	YM
74LVC1G10GN	YM
74LVC1G10GS	YM


[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.

5. Functional diagram

6. Pinning information

6.1 Pinning

6.2 Pin description

SymbolPinDescriptionA1data inputGND2ground (0 V)B3data inputY4data outputV _{CC} 5supply voltageC6data input	Table 3.	Pin description	
GND2ground (0 V)B3data inputY4data outputV _{CC} 5supply voltage	Symbol	Pin	Description
B3data inputY4data outputV _{CC} 5supply voltage	А	1	data input
Y 4 data output V _{CC} 5 supply voltage	GND	2	ground (0 V)
V _{CC} 5 supply voltage	В	3	data input
	Y	4	data output
C 6 data input	V _{CC}	5	supply voltage
	С	6	data input

7. Functional description

Table 4. Function table^[1]

Input			Output
Α	В	С	Y
Н	Н	Н	L
L	Х	Х	Н
Х	L	Х	Н
Х	Х	L	Н

[1] H = HIGH voltage level; L = LOW voltage level; X = don't care.

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

			•		,
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+6.5	V
I _{IK}	input clamping current	V _I < 0 V	-50	-	mA
VI	input voltage		<u>[1]</u> –0.5	+6.5	V
I _{OK}	output clamping current	$V_{\rm O}$ > $V_{\rm CC}$ or $V_{\rm O}$ < 0 V	-	±50	mA
Vo	output voltage	Active mode	<u>[1][2]</u> –0.5	$V_{CC} + 0.5$	V
		Power-down mode	<u>[1][2]</u> –0.5	+6.5	V
lo	output current	$V_{O} = 0 V$ to V_{CC}	-	±50	mA
I _{CC}	supply current		-	100	mA
I _{GND}	ground current		-100	-	mA
P _{tot}	total power dissipation	T_{amb} = -40 °C to +125 °C	[3] _	250	mW
T _{stg}	storage temperature		-65	+150	°C

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] When V_{CC} = 0 V (Power-down mode), the output voltage can be 5.5 V in normal operation.

9. Recommended operating conditions

Table 6. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC}	supply voltage		1.65	-	5.5	V
VI	input voltage		0	-	5.5	V
Vo	output voltage	Active mode	0	-	V _{CC}	V
		Power-down mode; $V_{CC} = 0 V$	0	-	5.5	V
T _{amb}	ambient temperature		-40	-	+125	°C
$\Delta t / \Delta V$	input transition rise and fall rate	V_{CC} = 1.65 V to 2.7 V	-	-	20	ns/V
		$V_{CC} = 2.7 V \text{ to } 5.5 V$	-	-	10	ns/V

10. Static characteristics

Table 7. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Parameter	Conditions	–40 °C to +85 °C			–40 °C to +125 °C		Unit
		Min	Typ <mark>[1]</mark>	Max	Min	Max	
HIGH-level input	V_{CC} = 1.65 V to 1.95 V	$0.65V_{CC}$	-	-	0.65V _{CC}	-	V
voltage	V_{CC} = 2.3 V to 2.7 V	1.7	-	-	1.7	-	V
	$V_{CC} = 2.7 \text{ V} \text{ to } 3.6 \text{ V}$	2.0	-	-	2.0	-	V
	V_{CC} = 4.5 V to 5.5 V	$0.7V_{CC}$	-	-	$0.7V_{CC}$	-	V
LOW-level input	V_{CC} = 1.65 V to 1.95 V	-	-	$0.35V_{CC}$	-	$0.35V_{CC}$	V
voltage	V_{CC} = 2.3 V to 2.7 V	-	-	0.7	-	0.7	V
	$V_{CC} = 2.7 \text{ V} \text{ to } 3.6 \text{ V}$	-	-	0.8	-	0.8	V
	V_{CC} = 4.5 V to 5.5 V	-	-	$0.3V_{CC}$	-	$0.3V_{CC}$	V
HIGH-level	$V_{I} = V_{IH} \text{ or } V_{IL}$						
output voltage	I _O = -100 μA; V _{CC} = 1.65 V to 5.5 V	$V_{CC}-0.1$	-	-	$V_{CC}-0.1$	-	V
	I _O = -4 mA; V _{CC} = 1.65 V	1.2	-	-	0.95	-	V
	$I_{O} = -8$ mA; $V_{CC} = 2.3$ V	1.9	-	-	1.7	-	V
	$I_{O} = -12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	2.2	-	-	1.9	-	V
	$I_{O} = -24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.3	-	-	2.0	-	V
	$I_{O} = -32 \text{ mA}; V_{CC} = 4.5 \text{ V}$	3.8	-	-	3.4	-	V
LOW-level	$V_{I} = V_{IH} \text{ or } V_{IL}$						
output voltage	I _O = 100 μA; V _{CC} = 1.65 V to 5.5 V	-	-	0.10	-	0.10	V
	$I_0 = 4 \text{ mA}; V_{CC} = 1.65 \text{ V}$	-	-	0.45	-	0.70	V
	$I_0 = 8 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.30	-	0.45	V
	I_{O} = 12 mA; V_{CC} = 2.7 V	-	-	0.40	-	0.60	V
	$I_{O} = 24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.55	-	0.80	V
	$I_{O} = 32 \text{ mA}; V_{CC} = 4.5 \text{ V}$	-	-	0.55	-	0.80	V
input leakage current	V _I = 5.5 V or GND; V _{CC} = 0 V to 5.5 V	-	±0.1	±5	-	±100	μA
power-off leakage current	$V_{\rm I}~\text{or}~V_{\rm O}$ = 5.5 V; V_{CC} = 0 V	-	±0.1	±10	-	±200	μA
supply current	$V_{I} = 5.5 V \text{ or GND}; I_{O} = 0 A;$ $V_{CC} = 1.65 V \text{ to } 5.5 V$	-	0.1	10	-	200	μA
additional supply current		-	5	500	-	5000	μA
input capacitance	$V_{CC} = 3.3 \text{ V};$ $V_{I} = \text{GND to } V_{CC}$	-	3	-	-	-	pF
	HIGH-level input voltage LOW-level input voltage HIGH-level output voltage LOW-level output voltage input leakage current power-off leakage current supply current additional supply current	HIGH-level input voltage $V_{CC} = 1.65 V to 1.95 V$ $V_{CC} = 2.3 V to 2.7 V$ $V_{CC} = 2.7 V to 3.6 V$ $V_{CC} = 4.5 V to 5.5 V$ LOW-level input voltage $V_{CC} = 1.65 V to 1.95 V$ $V_{CC} = 2.3 V to 2.7 V$ $V_{CC} = 2.3 V to 2.7 V$ $V_{CC} = 2.3 V to 2.7 V$ $V_{CC} = 2.7 V to 3.6 V$ $V_{CC} = 2.7 V to 3.6 V$ $V_{CC} = 2.7 V to 3.6 V$ $V_{CC} = 1.65 V to 5.5 V$ HIGH-level output voltage $V_I = V_{IH} \text{ or } V_{IL}$ $I_0 = -100 \ \mu A$; $V_{CC} = 1.65 V to 5.5 V$ $I_0 = -4 \ mA$; $V_{CC} = 1.65 V$ $I_0 = -4 \ mA$; $V_{CC} = 2.3 V$ $I_0 = -24 \ mA$; $V_{CC} = 3.0 V$ $I_0 = -32 \ mA$; $V_{CC} = 3.0 V$ $I_0 = -12 \ mA$; $V_{CC} = 1.65 V to 5.5 V$ $I_0 = 100 \ \mu A$; $V_{CC} = 1.65 V to 5.5 V$ $I_0 = 4 \ mA$; $V_{CC} = 1.65 V$ $I_0 = 4 \ mA$; $V_{CC} = 1.65 V$ $I_0 = 12 \ mA$; $V_{CC} = 2.3 V$ $I_0 = 12 \ mA$; $V_{CC} = 2.3 V$ $I_0 = 12 \ mA$; $V_{CC} = 3.0 V$ $I_0 = 12 \ mA$; $V_{CC} = 3.0 V$ $I_0 = 12 \ mA$; $V_{CC} = 3.0 V$ $I_0 = 12 \ mA$; $V_{CC} = 0 V to 5.5 V$ $I_0 = 12 \ mA$; $V_{CC} = 0 V$ $I_0 = 12 \ mA$;	Min Min HIGH-level input voltage $V_{CC} = 1.65 V to 1.95 V$ $0.65V_{CC}$ $V_{CC} = 2.3 V to 2.7 V$ 1.7 $V_{CC} = 2.7 V to 3.6 V$ 2.0 $V_{CC} = 4.5 V to 5.5 V$ $0.7V_{CC}$ LOW-level input voltage $V_{CC} = 1.65 V to 1.95 V$ $ V_{CC} = 2.3 V to 2.7 V$ $ V_{CC} = 2.3 V to 2.7 V$ $ V_{CC} = 2.3 V to 5.5 V$ $ V_{CC} = 2.7 V to 3.6 V$ $ V_{CC} = 2.7 V to 3.6 V$ $ V_{CC} = 2.7 V to 3.6 V$ $ V_{CC} = 1.65 V to 5.5 V$ $ V_{CC} = 1.65 V to 5.5 V$ $ V_{CC} = 1.65 V to 5.5 V$ 1.2 $I_0 = -4 mA; V_{CC} = 1.65 V$ 1.2 $I_0 = -24 mA; V_{CC} = 3.0 V$ 2.3 $I_0 = -100 \ \mu A;$ $V_CC = 1.65 V$ $V_1 = V_{IH} \text{ or V_{IL} V_{I} = 0.0 \ \mu A; V_CC = 1.65 V I_0 = 100 \ \mu A; V_CC = 1.65 V V_CC = 1.65 V I_0 = 100 \ \mu A; V_CC = 1.65 V T = 0.5 V V_CC = 0.5 V V I_0 = 12 \ m A; V_{CC} = 3.$	$\begin{tabular}{ c $	MinTypUMaxHIGH-level input voltage $V_{CC} = 1.65 V to 1.95 V$ $0.65V_{CC}$ $ V_{CC} = 2.3 V to 2.7 V$ 1.7 $ V_{CC} = 2.7 V to 3.6 V$ 2.0 $ V_{CC} = 4.5 V to 5.5 V$ $0.7V_{CC}$ $ V_{CC} = 2.3 V to 2.7 V$ $ 0.35V_{CC}$ $V_{CC} = 2.3 V to 5.5 V$ $ 0.35V_{CC}$ $V_{CC} = 2.3 V to 2.7 V$ $ 0.3V_{CC}$ $V_{CC} = 2.3 V to 5.5 V$ $ 0.3V_{CC}$ $V_{CC} = 2.7 V to 3.6 V$ $ 0.3V_{CC}$ $V_{CC} = 4.5 V to 5.5 V$ $ 0.3V_{CC}$ $V_{CC} = 4.5 V to 5.5 V$ $ 0.3V_{CC}$ $V_{CC} = 1.65 V to 5.5 V$ $ I_0 = -100 \ \mu$ A; $V_{CC} = 2.3 V$ 1.2 $ I_0 = -100 \ \mu$ A; $V_{CC} = 2.3 V$ 1.2 $ I_0 = -12 \ m$ A; $V_{CC} = 2.3 V$ 1.2 $ I_0 = -12 \ m$ A; $V_{CC} = 2.3 V$ 1.9 $ I_0 = -12 \ m$ A; $V_{CC} = 2.3 V$ $ I_0 = -12 \ m$ A; $V_{CC} = 3.0 V$ $ I_0 = 12 \ m$ A; $V_{CC} = 2.3 V$ $ I_0 = 12 \ m$ A; $V_{CC} = 2.3 V$ $ I_0 = 12 \ m$ A; $V_{CC} = 2.3 V$ $ I_0 = 12 \ m$ A; $V_{CC} = 3.0 V$ $ I_0 = 12 \ m$ A; $V_{CC} = 3.0 V$ $ I_0 = 12 \ m$ A; $V_{CC} = 3.0 V$ $ -$		$\begin{tabular}{ c $

[1] All typical values are measured at T_{amb} = 25 °C.

11. Dynamic characteristics

Table 8. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V). For test circuit see Figure 8.

Symbol	Parameter	eter Conditions		−40 °C to +85 °C			–40 °C to +125 °C		Unit
				Min	Typ <mark>[1]</mark>	Max	Min	Max	
t _{pd}	propagation delay	A, B and C to Y; see Figure 7	[2]						
		V_{CC} = 1.65 V to 1.95 V		1.5	4.7	18.0	1.5	21.5	ns
	V_{CC} = 2.3 V to 2.7 V		1.0	3.0	6.5	1.0	7.8	ns	
		$V_{CC} = 2.7 V$		1.0	3.0	6.0	1.0	7.5	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$		1.0	2.6	5.0	1.0	6.2	ns
		$V_{CC} = 4.5 \text{ V} \text{ to } 5.5 \text{ V}$		1.0	1.9	3.6	1.0	4.4	ns
C_{PD}	power dissipation capacitance	V_{I} = GND to $V_{\text{CC}};V_{\text{CC}}$ = 3.3 V	[3]	-	12	-	-	-	pF

[1] Typical values are measured at T_{amb} = 25 °C and V_{CC} = 1.8 V, 2.5 V, 2.7 V, 3.3 V and 5.0 V respectively.

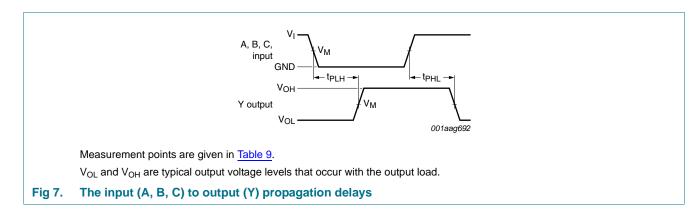
[2] t_{pd} is the same as t_{PLH} and t_{PHL} .

[3] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} \times N + \Sigma(C_{L} \times V_{CC}^{2} \times f_{o}) \text{ where:}$

 f_i = input frequency in MHz;

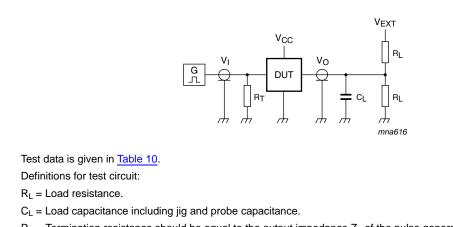
 f_o = output frequency in MHz;


 C_L = output load capacitance in pF;

 V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}{}^2 \times f_o)$ = sum of the outputs.


12. Waveforms

NXP Semiconductors

74LVC1G10

Table 9. Measurement poi	nts		
Supply voltage	Input	Output	
V _{CC}	V _M	V _M	
1.65 V to 1.95 V	0.5V _{CC}	0.5V _{CC}	
2.3 V to 2.7 V	0.5V _{CC}	0.5V _{CC}	
2.7 V	1.5 V	1.5 V	
3.0 V to 3.6 V	1.5 V	1.5 V	
4.5 V to 5.5 V	0.5V _{CC}	0.5V _{CC}	

 R_{T} = Termination resistance should be equal to the output impedance Z_{o} of the pulse generator.

 V_{EXT} = External voltage for measuring switching times.

Fig 8. Test circuit for measuring switching times

Table 10. Test data

Supply voltage	Input		Load		V _{EXT}
V _{cc}	VI	$t_r = t_f$	CL	RL	t _{PLH} , t _{PHL}
1.65 V to 1.95 V	V _{CC}	\leq 2.0 ns	30 pF	1 kΩ	open
2.3 V to 2.7 V	V _{CC}	\leq 2.0 ns	30 pF	500 Ω	open
2.7 V	2.7 V	\leq 2.5 ns	50 pF	500 Ω	open
3.0 V to 3.6 V	2.7 V	\leq 2.5 ns	50 pF	500 Ω	open
4.5 V to 5.5 V	V _{CC}	\leq 2.5 ns	50 pF	500 Ω	open

74LVC1G10

Single 3-input NAND gate

13. Package outline

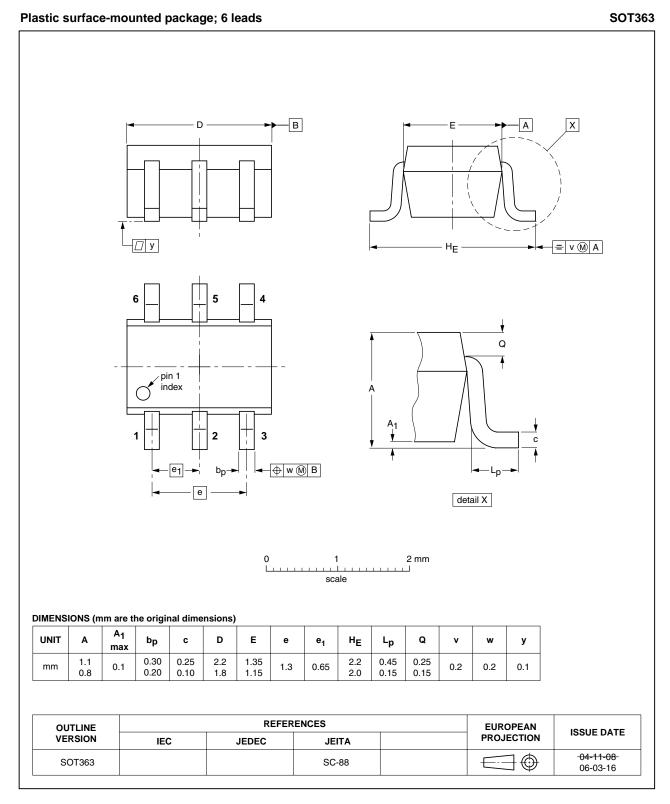
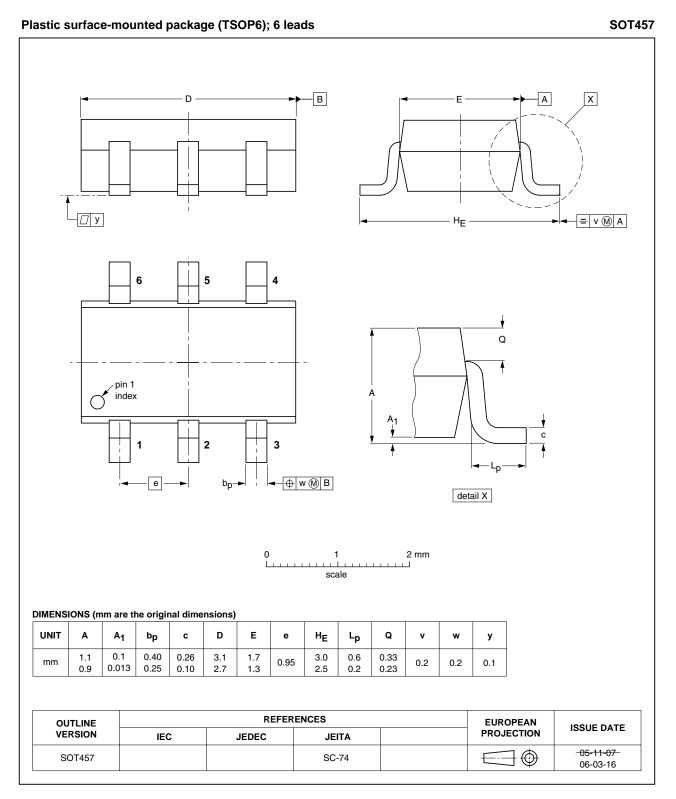
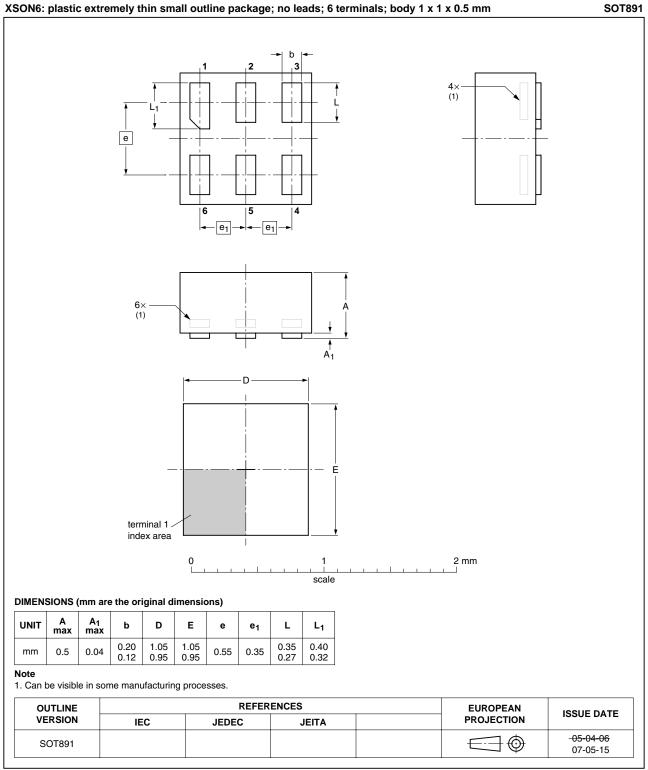


Fig 9. Package outline SOT363 (SC-88)

All information provided in this document is subject to legal disclaimers.




Fig 10. Package outline SOT457 (SC-74)

All information provided in this document is subject to legal disclaimers.

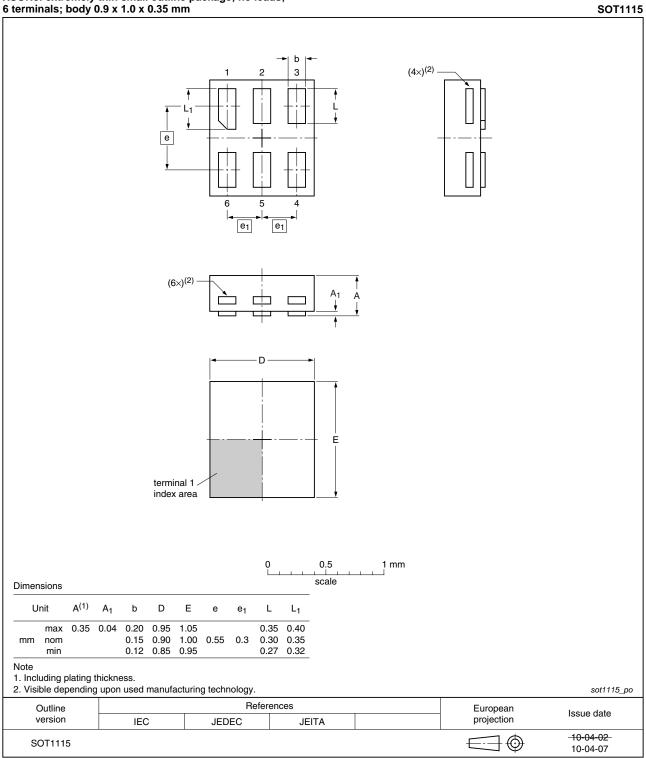
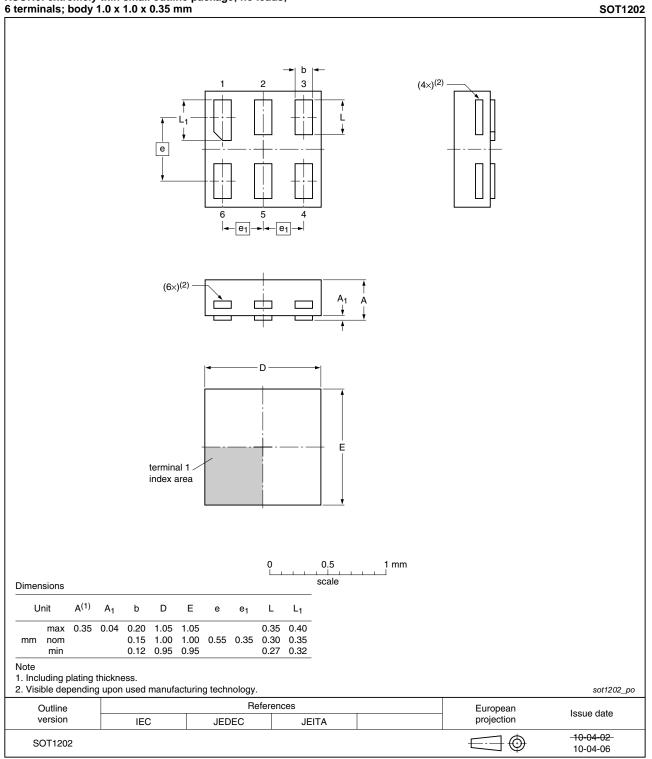

XSON6: plastic extremely thin small outline package; no leads; 6 terminals; body 1 x 1.45 x 0.5 mm

Fig 11. Package outline SOT886 (XSON6)

XSON6: plastic extremely thin small outline package; no leads; 6 terminals; body 1 x 1 x 0.5 mm


Fig 12. Package outline SOT891 (XSON6)

XSON6: extremely thin small outline package; no leads; 6 terminals; body 0.9 x 1.0 x 0.35 mm

Fig 13. Package outline SOT1115 (XSON6)

All information provided in this document is subject to legal disclaimers.

XSON6: extremely thin small outline package; no leads; 6 terminals; body 1.0 x 1.0 x 0.35 mm

Fig 14. Package outline SOT1202 (XSON6)

All information provided in this document is subject to legal disclaimers.

14. Abbreviations

Table 11.	Abbreviations				
Acronym	Description				
CDM	Charged Device Model				
CMOS	Complementary Metal Oxide Semiconductor				
DUT	Device Under Test				
ESD	ElectroStatic Discharge				
HBM	Human Body Model				
MM	Machine Model				
TTL	Transistor-Transistor Logic				

15. Revision history

Table 12. Revisio	on history			
Document ID	Release date	Data sheet status	Change notice	Supersedes
74LVC1G10 v.2	20101021	Product data sheet	-	74LVC1G10 v.1
Modifications:	 Added type i 	number 74LVC1G10GN (SOT ⁻	1115/XSON6 package).	
	 Added type i 	number 74LVC1G10GS (SOT	1202/XSON6 package).	
74LVC1G10 v.1	20071002	Product data sheet	-	-

16. Legal information

16.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

16.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

Product specification — The information and data provided in a Product data sheet shall define the specification of the product as agreed between NXP Semiconductors and its customer, unless NXP Semiconductors and customer have explicitly agreed otherwise in writing. In no event however, shall an agreement be valid in which the NXP Semiconductors product is deemed to offer functions and qualities beyond those described in the Product data sheet.

16.3 Disclaimers

Limited warranty and liability — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

In no event shall NXP Semiconductors be liable for any indirect, incidental, punitive, special or consequential damages (including - without limitation - lost profits, lost savings, business interruption, costs related to the removal or replacement of any products or rework charges) whether or not such damages are based on tort (including negligence), warranty, breach of contract or any other legal theory.

Notwithstanding any damages that customer might incur for any reason whatsoever, NXP Semiconductors' aggregate and cumulative liability towards customer for the products described herein shall be limited in accordance with the *Terms and conditions of commercial sale* of NXP Semiconductors.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use in automotive applications — This NXP Semiconductors product has been qualified for use in automotive applications. The product is not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Customers are responsible for the design and operation of their applications and products using NXP Semiconductors products, and NXP Semiconductors accepts no liability for any assistance with applications or customer product design. It is customer's sole responsibility to determine whether the NXP Semiconductors product is suitable and fit for the customer's applications and products planned, as well as for the planned application and use of customer's third party customer(s). Customers should provide appropriate design and operating safeguards to minimize the risks associated with their applications and products.

NXP Semiconductors does not accept any liability related to any default, damage, costs or problem which is based on any weakness or default in the customer's applications or products, or the application or use by customer's third party customer(s). Customer is responsible for doing all necessary testing for the customer's applications and products using NXP Semiconductors products in order to avoid a default of the applications and the products or of the application or use by customer's third party customer(s). NXP does not accept any liability in this respect.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) will cause permanent damage to the device. Limiting values are stress ratings only and (proper) operation of the device at these or any other conditions above those given in the Recommended operating conditions section (if present) or the Characteristics sections of this document is not warranted. Constant or repeated exposure to limiting values will permanently and irreversibly affect the quality and reliability of the device.

Terms and conditions of commercial sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, unless otherwise agreed in a valid written individual agreement. In case an individual agreement is concluded only the terms and conditions of the respective agreement shall apply. NXP Semiconductors hereby expressly objects to applying the customer's general terms and conditions with regard to the purchase of NXP Semiconductors products by customer.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

74LVC1G10 Product data sheet

Export control — This document as well as the item(s) described herein may be subject to export control regulations. Export might require a prior authorization from national authorities.

16.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

17. Contact information

For more information, please visit: http://www.nxp.com

For sales office addresses, please send an email to: salesaddresses@nxp.com

74LVC1G10

18. Contents

1	General description 1
2	Features and benefits 1
3	Ordering information 2
4	Marking 2
5	Functional diagram 2
6	Pinning information 3
6.1	Pinning 3
6.2	Pin description 3
7	Functional description 3
8	Limiting values 4
9	Recommended operating conditions 4
10	Static characteristics 5
11	Dynamic characteristics 6
12	Waveforms 6
13	Package outline 8
14	Abbreviations 14
15	Revision history 14
16	Legal information 15
16.1	Data sheet status 15
16.2	Definitions
16.3	Disclaimers
16.4	Trademarks 16
17	Contact information 16
18	Contents 17

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2010.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 21 October 2010 Document identifier: 74LVC1G10